


# CO<sub>2</sub>-Footprint of Getzner Werkstoffe GmbH PU products

The fundamental energy demand (approx. 99%) and therefore also the CO<sub>2</sub> emission results during the production (from crude oil to oil refinery to the raw material) of the primary raw materials (isocyanate and polyol). The production of the actual Getzner products amounts to 1% of the total energy demand.

During the production of plastic materials in average 2-3 kg CO<sub>2</sub> per kg finished product is generated during the entire production chain including the needed process energy. This value is approx. 30% higher for the high-quality Getzner polyurethanes which is compensated by an extraordinary longevity and functional life (up to 100 years).





### **Energy Input**

The energy input at the site in Bürs is depicted in the following table, wherein the whole area is considered (heating, building, power requirement light, IT, a.s.o.).

| Table 1: Energy in | nput at production | site Bürs |
|--------------------|--------------------|-----------|
|--------------------|--------------------|-----------|

| No | Energy                          | Quantity Conversion |        | Consumption in kWh |           |           | Share in % |      |      |
|----|---------------------------------|---------------------|--------|--------------------|-----------|-----------|------------|------|------|
|    |                                 | 2018                | in kWh | 2016               | 2017      | 2018      | 2016       | 2017 | 2018 |
| 1  | Electricity [kWh]               | 3,768,299           | x 1.0  | 2,502,278          | 3,069,511 | 3,768,299 | 58         | 60   | 66   |
| 2  | Fuel oil [L]                    | 0                   | x 10.0 | 90                 | 0         | 0         | 0          | 0    | 0    |
| 3  | Natural gas [Nm <sup>3</sup> ]  | 127,894.4           | x 10.0 | 1,330,870          | 1,516,662 | 1,278,944 | 31         | 30   | 22   |
| 4  | Company cars [L] <sup>1.)</sup> | 66,495              | x 10.0 | 500,960            | 518,910   | 664,950   | 12         | 10   | 12   |
|    | TOTAL                           |                     |        | 4,334,198          | 5,105,083 | 5,712,193 | 100        | 100  | 100  |

<sup>1.)</sup> Determined by the kilometre list of the leasing cars and average fuel consumption 6.5 Ltr. / 100 km

As initially mentioned, the end production represents a minor factor regarding the CO<sub>2</sub> footprint. Mainly essential for this effect is the production of raw materials.

Therefore Getzner has set oneself the target to make the procedures as raw material efficient as possible and to reduce the production waste to a minimum, and also to recycle these waste products. Getzner is constantly investing in the optimization of new equipment and new procedures, as for instance granulation or production of moulded parts.



The display below shows the most essential production steps for the manufacturing of the raw materials polyol and isocyanate. These base products are extracted from fossil raw materials – natural gas and crude oil – via several process steps:

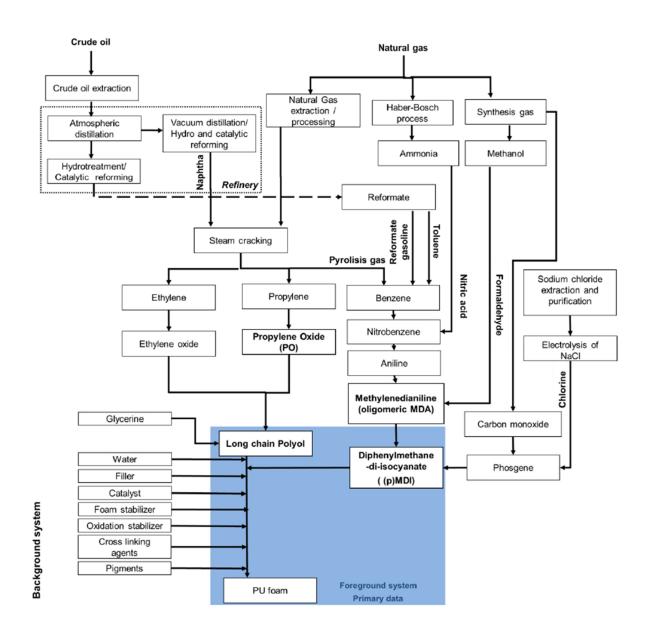



Fig.3: Process chart for the production of PU (MDI basis)



The following table shows the energy demand for the production of polyurethane foam. The demand is about 55 MJ/kg, whereupon 99% apply to the production of the base products.

 Table 2: Primary energy demand for the production of 1 kg PU-foam

| Primary Energy Demand                                                   | TDI-based PU<br>foam without<br>FR, density 35<br>to 40<br>kg/m³[MJ] | TDI-based PU<br>foam without<br>FR, density 18<br>to 25 kg/m <sup>3</sup><br>[MJ] | TDI-based PU<br>foam with FR,<br>density 40 to<br>54 kg/m <sup>3</sup> [MJ] | MDI-based vis-<br>coelastic PU<br>foam with-out<br>FR, density 45<br>to 53 kg/m <sup>3</sup><br>[MJ] |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Energy content in polymer (energy<br>recovery potential, quantified as  | 33.47                                                                | 33.47                                                                             | 33.47                                                                       | 33.47                                                                                                |
| gross calorific value of polymer)<br>Process energy (quantified as dif- |                                                                      |                                                                                   |                                                                             |                                                                                                      |
| ference between primary energy demand and energy content of pol-        | 58.97                                                                | 55.84                                                                             | 64.10                                                                       | 55.24                                                                                                |
| ymer)                                                                   |                                                                      |                                                                                   |                                                                             |                                                                                                      |
| Total primary energy demand                                             | 88.67                                                                | 85.54                                                                             | 93.80                                                                       | 84.94                                                                                                |

## CO<sub>2</sub>-Footprint per kg PU

The energy input regarding the produced PU quantity at the site in Bürs amounts to 2 MJ/kg (incl. heating, light, IT). This corresponds only to a share of 3.6% of the total required process energy (55 MJ/kg).

According to the study "Eco-Profiles and Environmental Product Declarations of the European Plastic Manufactures – Flexible Polyurethane (PU) Foam" the CO<sub>2</sub> emission per kg PU foam is about 2.7 kg.



#### The following table shows selected emissions into the air:

 Table 3: Selected air emissions during production of one kg PU (Getzner materials are MDI based)

| Air emissions                                     | TDI-based PU foam<br>without FR, density<br>35 to 40 kg/m <sup>3</sup> [kg] | TDI-based PU foam<br>without FR, density<br>18 to 25 kg/m³ [kg] | TDI-based PU foam<br>with FR, density 40<br>to 54 kg/m³ [kg] | MDI-based viscoe-<br>lastic PU foam with-<br>out FR, density 45 to<br>53 kg/m <sup>3</sup> [kg] |
|---------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Carbon dioxide, fossil (CO <sub>2</sub> , fossil) | 2.87                                                                        | 2.82                                                            | 3.20                                                         | 2.67                                                                                            |
| Carbon monoxide (CO)                              | 1.77E-03                                                                    | 1.77E-03                                                        | 2.19E-03                                                     | 1.64E-03                                                                                        |
| Methane (CH <sub>4</sub> )                        | 8.38E-03                                                                    | 8.18E-03                                                        | 9.25E-03                                                     | 7.70E-03                                                                                        |
| Sulphur dioxide (SO <sub>2</sub> )                | 3.16E-03                                                                    | 3.08E-03                                                        | 3.66E-03                                                     | 3.04E-03                                                                                        |
| Nitrogen oxides (NO <sub>x</sub> )                | 4.37E-03                                                                    | 4.25E-03                                                        | 5.03E-03                                                     | 4.11E-03                                                                                        |
| Particulate matter ≤ 10 µm (PM<br>10)             | 2.66E-04                                                                    | 2.65E-04                                                        | 4.77E-04                                                     | 2.17E-04                                                                                        |

#### The following global warming potential (GWP) is indicated.

*Table 4: Global warming potential for the production of one kg PU (Getzner materials are MDI based)* 

| Climate change                                 | TDI-based PU<br>foam without FR,<br>density 35 to 40<br>kg/m <sup>3</sup> | TDI-based PU<br>foam without FR,<br>density 18 to 25<br>kg/m <sup>3</sup> | TDI-based PU<br>foam with FR,<br>density 40 to 54<br>kg/m <sup>3</sup> | MDI-based vis-<br>coelastic PU<br>foam with-out<br>FR, density 45 to<br>53 kg/m <sup>3</sup> |
|------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Global Warming Potential (GWP)<br>[kg CO2 eq.] | 3.22                                                                      | 3.18                                                                      | 3.56                                                                   | 2.95                                                                                         |

Global Warming Potential (100 years) per 1 kg flexible PU foam

At the site in Bürs only approx.  $0.1 \text{ kg CO}_2$  is used for the production of 1 kg PU with regard to the total PU production quantity (incl. heating administration building, lighting administration and production, IT, a.s.o).



Bürs, 21.03.2019

where Gerole

Burtscher<sup>\</sup>Gerold Environmental Officer **Getzner Werkstoffe GmbH** 

in cooperation with



Consulting GmbH Brühlstraße 4 6713 Ludesch T +43 / (0) 5550 / 4424 F +43 / (0) 5550 / 4424-24 info@safeside.at | www.safeside.at

chread

Ing. Robert Schreieck Managing Director / Manager SafeSide Consulting GmbH

References:

[1] PlasticsEurope: Eco-profiles and environmental declarations – LCI methodology and PCR for uncompounded polymer resins and reactive polymer precursors (version 2.0, April 2011)

[2] Handbook on Life Cycle Assessment: An operational Guide to the ISO Standards; Dordrecht: Kluwer Academic Publishers, 2002.

[3] Huijbregts, M.A.J., 2000. Priority Assessment of Toxic Substances in the frame of LCA. Time horizon dependency of toxicity potentials calculated with the multi-media fate, exposure and effects model USES-LCA. Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands. (http://www.leidenuniv.nl/interfac/cml/lca2/).

[4] Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers, Toluene Diisocyanate (TDI) & Methylenediphenyl Diisocyanate (MDI), ISOPA, April 2012

[5] Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons, Inc., Hoboken / USA, 2010